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Galerkin Method for Solving of Singular Integral
Equation of Diffraction Problem*

Smirnov Yu.G., Tsupak A.A.

1 The statement of the diffraction problem

Let P={z:0< 71 <a,0 <z <b0< 23 < c} be aresonator with perfectly conducting boundary. Let

() be a three-dimensional body, located in P. @ is characterized by tensor permittivity € and constant

permeability po. We suppose that components of & are smooth functions in @ and (% ~1 ) is invertible

in Q; QNAP = §. Let P/Q be homogeneous and isotropic medium. Incident and diffraction fields depend

on time variable as e~**,

We will find electromagnetic diffraction fields E and H, satisfying Maxwell’s equations in P \ 8Q :

rot H = —iwéE +on (1)
rot B = iwpl - 7

The complete field should have continuous tangent components at 3@ :

[ixE)| = [ixd|| =0
oQ 8Q
and must satisfy the following boundary condition:
Eelor =0. (2)

2 Integro-differential equations for the diffraction problem

We will express the solution of the stated problem in terms of vector potentials Az and Ag [4]:

s = / Gelz,y)ieW)dy , An = / Gl v)in(v)dy |

3
E= zwquE— we ——grad div AE—rot AH , 3)

H= zweoAH—‘ gmddeH+rotAE

Here jp =32 + 72, ju=7%+7%, (7%, 7% are polarization currents). Gg, Gy are Green functions for
Helmholtz equation, conforming to the arbitrary currents ;%,;?{

Gg,Gy are known [3] to have the form of diagonal tensors (the components of Gg are written out
below):

shyxs shy(c ~ y3), X3 < y3

0 o
1 _ 26 infTm
Gg =2 Zlabvshﬂ,c cos( .'171)Sln( b T2) ('Ob( yl)bm( ){bh’)’Y3 shy(c — x3), X3 > V3

n=0m=

shyxg shy(c — y3), x3 < y3

o< oo
— B Sln 1' cos Tn To sin COs
E El mzoabys}nc ) cos( b ) ( 2y1) ( Y2 ){Sh,.ny shy(c = x3), X3 > Vs (4)

P m chyxs chy(c — y3), x3 < y3
nz—:l mz_:f'”smc sin(fen) sin(5te) sin( o) sin(%y yz){Ch’YYa' chy(c - x3), x3 > y3
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Here v = \/ In (”,:")2 — k& (the proper branch for square root is chosen as in [2], §2.3), € =1 and
sn:2forn~1 2,3,
We can obtain the followmg integro-differential equations (under the condition & = ,uoI in P):

E(z) = F%z) + kgé/(;’g [é—io‘y—) - f} E(y)dy + grad div Q/GE [__(_3_/2 - f] E(y)dy ,

and we have (5)

H(z) = H%z) — iwe, rot /G’E [_eé;y) - f] E(y)dy, z € Q.
0

Q

We can extract singularity of Green function G. Using Fourier transformation and interpolation poly-
nomials we can obtain:

1 ezko|z—y|

p P il I + diag{g:(z,y), 92(2,%), 93(z, ¥},

GE(wy) =

where gj are smooth functions.

3 Galerkin method

Let us introduce the following auxilary function

C) = - 5 5 cyrtere sin(Zo) sin(5az)sin( ) sin(2p2)
1m= 6
5 {shyxs shy(c —ys), x3 <ys (6)
shyys shy(c —x3), x3 > y3
The derivatives of G are connected to the derivatives of G through the equalities:
Gy 86
ZE =2 i=1,2,3. 7
el i 3 (M

Before describing the method itself we should make some transformations of equation (5). Denoting
. R . AN oo o
(%? - I) as £ and (%? - I) E as J we obtain the following equation

f::f kO/GEJ Ydy — grad div /GEJ(y)dy—Eg( ) (8)

We can write vector equation (8) as a system of three scalar equations:

Z&J (z) - kO/G’ z,y)J* (y)dy — ——dwx/G 2, 9)J(y)dy = E}(z), 1=1,2,3. (9)

i=1

We will determine the components of approximate solution 7 in the following way:

N N N
J-l = Zakf;(z)a j2 = Zbkflg(x)v ja = chfg(w), (10)
k=1 k=1 k=1

where f} are basis "hat”-functions dependent essentlally on z'. The explicit form of fi is given below.
Let Q be a parallelepiped: @ = {z: a1 < z' < az,b1 < 2% < by, 01 < 2° < 2}, Q C P. We will cover
Q with smaller parallelepipeds

1 . ml 1 1 2 2 2 3 3 3
Hklm*‘{x'wk—l Lz <, Ty LT S, Tp <2 S-’Em+1}

11)
az —a ba—b - (
2 lk,:z:lz=b1+22 1l,$§n=cl+2czn01m§

1
$k201+
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wherek=1,...,n-1; Im=0,1,...,%~1
Denoting (zy, — x—1) as h' we get the formulas for f},  :

11—‘ 1_ .
;;;—;:,_—z, ifet €lzy_pzi)andz € 1M},
oo 2l -zt .
Frim ;’i—‘ﬁT&—, if 2t € [z 2p ] and z € T}, (12)
0, ifz¢ Hilm
or 1)1 o1 g 1
£ :{ 1-grlz ‘xkl’}fxenlktm . (13)
m 0, ifz ¢ I,

Functions f3,, and f3, = should be determined by similar formulas. Since

2
fl%lmizle{r}e_l,:c}‘ﬁ} =0, fklmlﬂe{zfﬁl,zfﬂ} =0, fl?lmlzsé{:il_l,zf"“} =0, (14)

every component of approximate vector solution vanishes at some side of Q. However the constructed set
of basis functions does satisfy the necessary approximation condition.
Introducing total enumeration for basis functions we get

fifi i k=1, N,

where N = §(n’ — n?).
It is convenient to represent the augmented matrix for determining unknown coefficients ag, by, ¢ in
block form:

An A A | By
Axi A Ay | Br (15)
Az Az Az | By
where columns By, and matrices Ay are determined by formulas:
Bi = (E§, fF); (16)

AZﬂ@mﬁ%&ﬁ(/%mwmwmﬁm>—
@ (17)
M/—@zMMmMu,

k=123 i=1,...,N. (fg) determmes the scalar product in Lo, (f, g) ff

Applying the formulas of integration by parts to both internal and external integrals and taking into
account (7) and (14) we obtain:

kp—/ @ﬂwﬂUM—%%//Gmmﬂuﬁmwm—

Hl r‘lﬂ" nk I-Il

//ny—4'> FH (@) dyda.

It rI‘
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